Adding a Platform Above an Existing Walled Off Space

View from the side of the platform showing the cantilevered edge to carry the platform over the existing wall

View from the side of the platform showing the cantilevered edge to carry the platform over the existing wall

By Derick

We were contacted by a customer who had an existing walled off area on their floor that they were using for long-term storage.  They were running out of room and asked us to build a platform above it, as well as to span over another adjacent room to expand their storage space.

Overall, the platform was to be 42’ wide x 12’ deep in order to stretch over both rooms.  We needed to maintain a 10’ clearance height under the platform to clear their existing walls, and the deck was designed for light storage at 125 lbs per square foot live load, which would accommodate their light shelving storage as well potential future pallet storage for pallets up to 4’x4’ and weighing up to 2000 lbs.

View from underneath the platform with the columns and OSHA stairs dropping into an existing walled off area

View from underneath the platform with the columns and OSHA stairs dropping into an existing walled off area

We had to be very careful with the positioning of our columns on this project because the customer didn’t want anything in front of the building that might interfere with their aisle way. We set the mezzanine columns back inside the existing room and extended our deck to the front of the building.  Likewise, because the customer wanted to keep the stairs inside the footprint of the platform, the customer requested that we use an OSHA staircase as opposed to an IBC staircase. An IBC stair has a more gradual angle of decent with a 7” maximum rise for every 11” tread and requires an 11” handrail extension at the bottom (or in some locations, such as here in Ohio, 23”) An OSHA staircase with generally has around an 8” rise and 9” treads and does not require handrail extensions at the top and bottom.  The IBC staircase would not leave them with sufficient room at the bottom between the handrail extensions and the columns to access the stairs, so the decision to go with OSHA freed up some space for them.

Top of deck view of the platform with unfinished Resindek field cut around customer’s existing ductwork and a 6’ bi-parting swing gate

Top of deck view of the platform with unfinished Resindek field cut around customer’s existing ductwork and a 6’ bi-parting swing gate

For the decking we used a corrugated roof deck (painted reflective white) and skinned it with an unfinished ¾” Resindek LD.  This gave the customer a nice smooth deck surface up top and was significantly less expensive than a metal deck. The framing was held off the main walls of the building by about 6”in order to clear the base plates centered under the columns, to clear some small ducts and an existing building column the customer had running up their building’s primary walls, as well providing the installers with enough room to bolt the framing together. The decking was then run beyond the framing back to the customer’s walls and trimmed in the field by the installers to go around the customer’s existing building column and ductwork.

Top of deck view showing internal OSHA staircase and unfinished Resindek field cut around customer’s existing building column

Top of deck view showing internal OSHA staircase and unfinished Resindek field cut around customer’s existing building column

The materials were shipped out on a tarped dedicated flatbed, and were delivered the next day.  The customer unloaded the materials and staged them indoors near the work area.  They cleared out the room that we would be building in, and with no existing roof in the room that would otherwise need to be removed, they were all set for our installers.  Installation began on a Monday morning, and everything was wrapped up with another happy customer by lunch on Thursday.

Secure Elevated Wire Partition Tool Crib

wire_tool_crib_amezz1

By Brett

This is a project we completed in NE Ohio. The customer was looking for space for a secure tool crib for maintenance storage as well as the flexibility to store product. As the product was quite heavy, we utilized the ground floor portion for storing those items and used welded galvanized fencing above to secure their maintenance department’s tool storage. The welded wire fencing was selected because of its versatility. Welded wire partition panels have a weld at each intersection of the wire. In contrast, woven wire generally has the individual wires woven and tied off or welded to a fence frame. The welded wire option is great for most jobs because it can be cut to size in the field. If you measure inaccurately, it is not the end of the world because you can trim the extra length off the panels. Likewise, if there is piping or beams running in the way it is easy enough to cut the welded wire fence panel to accommodate the obstruction, while still maintaining the wire partition panel’s integrity.

wire_tool_crib_amezz2We utilized the existing stairs and landing from the building adjacent to the new crib in an effort to cut down cost and avoid taking up more room than necessary on their plant floor. The light you see is a reminder light for the operators of the adjacent crane. It reminds them that the mezzanine and tool crib are there so that they don’t bring their load all the way back to the stop and potentially come in contact with the new structure.

wire_tool_crib_amezz3On the front side of the mezzanine, a sliding door was in place for the occasional pallets of materials for maintenance to offload and store. The customer went with a sliding door because it could be opened, a pallet of material could be set on the top of the mezzanine deck and then the sliding door could be closed while the pallet was offloaded. With a hinged gate they would have needed to pull the pallet away from the opening to close the open fall hazard, but that wasn’t going to be feasible due to the bar grating decking.

wire_tool_crib_amezz4This customer opted for a simple keyed entry on the hinge door, but they could have used a push button or key card lock with electric strike as well.

Ultimately, they were able to have secure storage for their maintenance department while keeping their product storage below, at a price that fit their budget.

 

Using Modular Building Materials to Consolidate the Engineering Department out onto the Shop Floor

Exterior view of the completed 140’ long  modular office complex

Exterior view of the completed 140’ long modular office complex

By Derick @ A-Mezz

Most commonly, when someone contacts us looking for a modular building system, they’re looking to put in something small — a 12’ x 12’ office, or a 16’ x 24’ conference room, for example. That is not always the case, though. Modular wall systems are rather versatile and can be used for much larger projects as well. These photos are all of one such project we put together for a happy customer here in Cleveland, Ohio.

Interior view down the hallway of offices as the project is being installed

Interior view down the hallway of offices as the project is being installed

The customer wanted to move their engineering department down onto the plant floor. Working alongside the customer, we came up with a design for a 140’ x 35’6” building system to go on the plant floor partially underneath a decommissioned bridge crane.   At one end we had eight 12’ x 12’ offices, and a 12’ x 14’ three walled “war room”.

Interior view of the 62’ span open area along with one of the existing bridge crane columns before it was enclosed

Interior view of the 62’ span open area along with one of the existing bridge crane columns before it was enclosed

The central section of the building was kept largely open to be set up for desk spaces. Typically, a corrugated roof deck is used to form a membrane that helps support the wall system. With the 62’ x 35’6” clear span across the room, we decided to support the wall panels and grid ceiling with a 4’ on center joist system that tied everything back to the support structure of the former bridge crane. The bridge crane columns were also boxed in with traditional construction to give the room a clean, finished appearance.

 

Finished and furnished 30’x18’ conference room.

Finished and furnished 30’x18’ conference room.

On the far end of the building we made a 30’ x 18’ conference room. The rest of the area was left connected to the main central region to be used for printers and supplies.

Primary entrance to the finished office complex .

Primary entrance to the finished office complex .

Heading into the project, one of the customer’s main concerns was to isolate their engineers from the noise of the production floor. The panels of the A-Wall 200 wall system we used offer an STC rating of 32. The internal tongue and groove connection between panels offers a uniform barrier of protection throughout the system. The areas where sound has an easier time of getting through on a wall system are usually the doors and windows. In order to help prevent this we put heavy-duty EPDM gaskets and mechanical sweeps on all the exterior doors, and used laminated glass for all the exterior windows. To further help isolate the building from the sounds of production around it, we placed a foam tape underneath the base track of the wall system, and added rolls of insulation above the acoustical grid ceiling.   After everything was put together, we had another happy customer with a quiet engineering department located right in the center of their production floor.

Using Crossover Stairs to Maneuver Around Conveyors

By Brett @ A-Mezz

We were contacted by a customer who was DSC03792looking for an easy way to circumvent a winding nest of conveyors so they would not have to serpentine around them, or worse, crawl over/under them. Some customized crossover stairs were just the ticket. We had to ensure that we did not interrupt the flow of traffic on the conveyor and next to the conveyor. Each crossover was fitted with front steps and rear steps when travel beyond the steps was necessary to let their employees have access to all four sides of the crossovers. The important thing was to increase mobility throughout the plant, while not cutting off areas they already had access to.

Each stair crossover was fitted with a 34” high DSC03794handrail on one side and had closed diamond plate treads and decking to avoid slips and falls. Each platform was 30” high. Normally we’d just make the crossover level at the top so that you have less up and down when going across the conveyors, but the customer had some obstructions we had to work around. In the foreground of the photos below you can see that there are some control panels and electrical boxes for the conveyors that we had to keep clear. As we go higher with the mid platform we have to go longer with the stairs coming from the front and rear, which would then cause the stairs to interfere with those control panels, so the customer decided that they wanted the mid platform lower.

DSC03793There was also the option to go without the mid platform and the crossover stairs coming from the front and rear of it. That was actually the original design, but their employees did not like having to walk up and down and up and down over and over – especially if they were carrying something with them. The mid platform being installed at a lower height was the compromise with regards to comfort, safety and available space.

 

The last photo in the set shows a location DSC03795where the stair crossover was actually far enough behind the conveyor control panels to do a conveyor height platform with stairs coming from the front only. All of the crossovers were installed with the ability to be removed without too much difficulty should there be any faulty equipment that needs to be removed for repair or replacement beyond the stair.

Cantilevered Storage Mezzanine with Wide Column Locations

mezzanine cantilevered edge

Wide span storage mezzanine with a cantilevered edge for a plastics company

By Derick @ A-Mezz

These are some photos of a mezzanine floor job we did for a site in Idaho. The contractor was looking to add a 50’ wide x 35’ deep mezzanine for additional pallet storage space in their client’s warehouse.

The warehouse’s cement pad was not initially setup to accommodate the loads from the mezzanine columns. The initial mezzanine design utilized beam and c-section framing with 12’6”x17’6” nominal column spans. While the warehouse had some existing reinforced concrete piers, they would have needed to install twelve additional footers in their pad to support the other columns. They provided us with a layout of their existing concrete piers, and asked us to come up with an option to help them limit the number of additional footers they would need to install as much as possible.

Beam and bar joist framing with extended arms on the joist allow for a cantilevered edge

Beam and bar joist framing with extended arms on the joist allow for a cantilevered edge

Utilizing a beam and bar joist frame, we were able spread our column spans out to 25’ x 28’6” nominal with a 6’6” cantilevered edge. This allowed us to set four of the six columns on top of the customer’s existing reinforced concrete piers. This also had the additional benefit of allowing for a more open space below the deck.

The customer had a couple options on how we could work around the large tapered building columns along the back wall. We could have dropped an additional column and used additional beams to frame around the center tapered building column, but the customer instead chose to pull the platform away from the wall just enough to clear them, and add some additional handrail along the back end of the cantilevered storage mezzanine for fall protection.

Unfinished resindek surface with both face and deck mounted handrail

Unfinished resindek surface with both face and deck mounted handrail

The platform was designed for a 125 pound per square foot uniform live load and used a cost effective corrugated roof deck and unfinished resindek to form the mezzanine deck.   This gave the end user a smooth surface to work on that wouldn’t peel with the rolling loads of the pallet jacks, and allowed them to store their pallets of packing materials on top of the deck as long as no pallet and pallet jack weighed over 2000 lbs.

Acoustic Wall Panels Control Machine Shop Noise

By Victor @ A-Mezz

wall system

Solid relocatable acoustic wall panels to control compressor noise

In this photo an Ohio bearing repair shop needed a separation between a machining operation and an assembly area. The customer wanted a portable rigid wall system that could provide flexibility and be relocated as the shop layout was most likely going to change to accommodate a new piece and an expansion to their services and equipment. The shop area was conditioned and space was already tight, so they needed to keep everything as open as possible. Windows were added for visual safety.  You may wonder “Why use a rigid panel and not an industrial curtain?” We offered both options and, as it turned out, the minimal cost savings of a vinyl curtain system did not negate the additional benefits of solid acoustic wall panels. Five months later the area was rearranged and these panels are being used in the new location of the customer’s shop.

acoustical partition system

Wall panels to separate machine shop and control noise

The back wall in the photo to the right shows a view of this acoustical partition system that surrounds two rather noisy compressors. This area enclosing the air compressors does include a ceiling system with sound control insulation. All the windows are laminated tempered safety glass. Laminated glass provides superior acoustic benefits over standard tempered safety glass.

When the partition curtain wall was later relocated, the panels comprising the compressor room remained in their original location.

This is only one example of several modular wall systems this customer has in this facility. Three other modular enclosures serve as clean rooms and process control rooms, and two others are being used as production control and shop supervisors’ offices.

Galvanized Ladder Gates for Survey Tower Safety

By Brett @ A-Mezz

Protecting unguarded railing openings with ladder safety gates on a 12’h survey tower in Texas

Protecting unguarded railing openings with ladder safety gates on a 12’h survey tower in Texas

We received these photos back from a happy customer who contacted us looking for safe platform access by their ladder for a survey tower in San Antonio, Texas. They were accessing the tower shown by a fixed ladder but they did not have any fall protection at the ladder opening which is the OSHA requirement.

(OSHA 1910.23(a)(2):

Every ladderway floor opening or platform shall be guarded by a standard railing with standard toeboard on all exposed sides (except at entrance to opening), with the passage through the railing either provided with a swinging gate or so offset that a person cannot walk directly into the opening.

In other words you have to have a handrail with toeboard on all sides of an elevated structure, but at the ladder opening you have two options. Option #1 is to use a safety gate with top and mid rail but without the 4”high toe guard. This is your most common solution. Option #2 is to have the ladder offset so that you cannot step directly into the opening. This can add much cost to a job as you have to add landing space and railing to achieve the offset install location. As this survey tower was not using an offset landing for the ladder, the gate was this customer’s only option available to comply with OSHA standards.

After showing them several options, they finally decided on the MLG galvanized ladder gates. For something that was going to sit out in the elements and hopefully receive no maintenance, the galvanized gate with stainless steel springs was the best fit. The MLG gate also ended up being more than 20% cheaper than their other options so they saved some money on the project as well.

Close up of the galvanized ladder gate

Close up of the galvanized ladder gate

Here you can see a close-up of the ladder gate.  Installation was fast and simple:  flip the gate around to get to the proper orientation, bolt the supplied U bolts around the existing railing, and adjust the length of the gate arm.  Flipping the safety gate allows it to pull people away from the edge of the platform and into the middle.  Installation took about 5 minutes from the time they unboxed the gate to completion, and now when they climb up the ladder they only have to push the gate in with their bodies and step onto the platform.  No more reaching up to unhook chains – which don’t meet OSHA standards at ladder openings – or worrying about staying clear of an unguarded ladder opening.

This customer was so pleased with how our ladder gates worked for their unprotected opening that they called back and ordered more safety gates for another survey tower ladder of theirs.